
Extend BuddyPress - Part One.
Exploring the Activity Component

Huge Thanks to the BuddyPress core developpers !

apeatling johnjamesjacoby MrMaz DJPaul boonebgorges

BuddyPress is definitely my favorite WordPress plugin. "Social Networking in a box" and
this promise is at the « rendez-vous ».

From my point of view, one of the most important date of this plugin history is on
2010/02/16, when was launched the version 1.2. Thanks to it we no longer need a multi-
site WordPress config to offer our visitors a community website.

BuddyPress is a very singular plugin : to such an extent that we talk of "BuddyPress
Developers" ! I don’t know a lot of plugins for which such qualification is used to define
persons who engage in the design of extensions to this plugin.

And precisely what makes BuddyPress ‘not like the others’ is the multitude of hooks (like
Action or Filter) that are available and allows us to extend it by our creations.

Since I met it in July 2010, I’ve written 25 articles to submit tips or plugins of my design
such as BP My Home, BP Show Friends, Bowe Codes or BP Code Snippets.

Today, my goal is not necessarily to deliver a new trick or plugin (even if there is one to
download !). It is rather to make you want to create yours and join the hall of fame of
BuddyPress plugin developers.

I invite you to follow me for a serie of articles about an expedition in the heart of
BuddyPress. This first article will allow us to meet the landscape and design a plugin on
what for me is the Major BuddyPress component : the Activities.

http://profiles.wordpress.org/apeatling
http://profiles.wordpress.org/apeatling
http://profiles.wordpress.org/johnjamesjacoby
http://profiles.wordpress.org/johnjamesjacoby
http://profiles.wordpress.org/MrMaz
http://profiles.wordpress.org/MrMaz
http://profiles.wordpress.org/DJPaul
http://profiles.wordpress.org/DJPaul
http://profiles.wordpress.org/boonebgorges
http://profiles.wordpress.org/boonebgorges
http://buddypress.org
http://buddypress.org
http://codex.wordpress.org/Plugin_API%23Actions
http://codex.wordpress.org/Plugin_API%23Actions
http://codex.wordpress.org/Plugin_API%23Filters
http://codex.wordpress.org/Plugin_API%23Filters
http://imath.owni.fr/2012/05/02/extend-buddypress-part-1/%23dld-2nd
http://imath.owni.fr/2012/05/02/extend-buddypress-part-1/%23dld-2nd
http://buddypress.org/extend/plugins/
http://buddypress.org/extend/plugins/
http://translate.googleusercontent.com/translate_c?act=url&hl=fr&ie=UTF8&prev=_t&rurl=translate.google.fr&sl=fr&tl=en&twu=1&u=http://buddypress.org/extend/plugins/&usg=ALkJrhgnZTEQ7wH98yPk8Y8nQKagJerZ7A
http://translate.googleusercontent.com/translate_c?act=url&hl=fr&ie=UTF8&prev=_t&rurl=translate.google.fr&sl=fr&tl=en&twu=1&u=http://buddypress.org/extend/plugins/&usg=ALkJrhgnZTEQ7wH98yPk8Y8nQKagJerZ7A

Table of Contents

..Preparing our surviving kit! 3

..Landing! Enjoy the lanscape. 4

...Building the first version of our plugin 5

...Warm-up! 6

...Load a javascript only when needed 7

..Finding the best hook to intercept 8

...What about a small cookie break ? 11

..On our way to the "main street" of our extension 13

..Being imaginative using tricks 14

..Loopings! 17

..A little makeover is needed .. 20

.........Let’s ease the the super admin’s life and take care of deleting our fingerprints 21

..Download the first version of our plugin.. 24

...Half time ! 24

...Plugin Upgrade 25

..Optimize! 25

..Capitalize! 26

...WPAjaxifying the reshare 28

..Enjoy the activity metas. 30

...To In(finity)ternational and Beyond 31

...Possible evolution of the function reshare 32

..Download the final version of our plugin! 33

Preparing our surviving kit!

Designing a BuddyPress plugin requires first to be equipped. Here’s my toolbox:

1.WordPress 3.3.2 and BuddyPress 1.5.5.
2.A local Apache / MySql / Php server (I chose MAMP).
3.A text editor (i like TextMate)
4.bookmarks to BuddyPress Codex and especially to the conditional template tags

section.
5.A bookmark to WordPress Codex of course.
6.PoEdit for the internationalization of our plugin
7.Not to mention a good playlist. Right now I listen to RHCP

Fig. 1 : Do not mess a masterpiece!

It’s essential to avoid (i’d rather say it’s forbidden) modifying the source code of
BuddyPress. Beyond the risks to its stability, consider upgrading! BuddyPress is regularly
publishing upgrades and if you modify it, you’ll lose all your changes at its next upgrade.

http://codex.buddypress.org/
http://codex.buddypress.org/
http://translate.googleusercontent.com/translate_c?act=url&hl=fr&ie=UTF8&prev=_t&rurl=translate.google.fr&sl=fr&tl=en&twu=1&u=http://codex.buddypress.org/&usg=ALkJrhhA3F5d1K02WIZhApIhTcqJgjSHpQ
http://translate.googleusercontent.com/translate_c?act=url&hl=fr&ie=UTF8&prev=_t&rurl=translate.google.fr&sl=fr&tl=en&twu=1&u=http://codex.buddypress.org/&usg=ALkJrhhA3F5d1K02WIZhApIhTcqJgjSHpQ
http://codex.buddypress.org/developer-docs/conditional-template-tags/
http://codex.buddypress.org/developer-docs/conditional-template-tags/
http://codex.wordpress.org/
http://codex.wordpress.org/
http://grooveshark.com/%23!/playlist/Red+Hot+Chili+Peppers/68895936
http://grooveshark.com/%23!/playlist/Red+Hot+Chili+Peppers/68895936

Landing! Enjoy the lanscape.

Fig. 2 : Scripts, DB and precious $bp global !

BuddyPress is an extension that runs across the network when WordPress Mu config is
set, and its views are available on main blog's network. Note that since version 1.5, BP
creates WordPress pages for each of its component.

Highlighted in blue, the tables and scripts that will be useful for our plugin. Due to lack
of space, I have not detailed the content of the bp-themes directory which contains the
default theme for BuddyPress.

We will focus in particular on these 2 activity templates (entry.php and post-form.php).

We can count on the precious $bp global which stores a bunch of useful variables that
will help us in our plugin. To use it, simply refer to it at the beginning of your function like
this:

function myfunction() {
 global $bp;
 / * your code * /
}

Here are three variables of $bp, I use regularly:

● $bp->groups->current_group->id: informs about the id of the displayed group
● $bp->displayed_user->id: informs about the id of the displayed member
● $bp->loggedin_user->id: informs about the id of the connected member

We can also extend BuddyPress by using its BP_Component class to design our own
components, the Group API to add simple "apps" for groups and a number of very
interesting functions to interact with all its components (activities, notifications, groups,
forums, profiles ...). I will soon talk about it in the next episode of this serie.

Building the first version of our plugin
Our goal: to enable the super admin to use a ‘support’ group in order to share support

messages on all the other groups of the BuddyPress driven community website.

demo available here http://vimeo.com/imath/bp-agu-0-1

Let's start by building our test environment: create 3 groups, 2 public and 1 private. Our
“support” group will be public, we will first store its ID as a constant in our plugin.

Fig. 4 : The 3 groups you’ll need to create to test our plugin (Support group must be
public)

http://vimeo.com/imath/bp-agu-0-1
http://vimeo.com/imath/bp-agu-0-1

In the WordPress plugins directory, we create a new folder called bp-ads-group-update
in which we will add the 4 sub-folders : js, css, images, and includes. The main file of our
plugin is named bp-ads-group-update.php. Let’s first edit this file so that WordPress
understands it is a plugin by adding specific tags to its header.

Fig. 5 : The Header and organization of our plugin

Just like BuddyPress, our plugin will run throughout the Network if WordPress is
configured in multi-site mode (Network tag is set to true) . This will prevent its display in
the list of available extensions of child blogs, if the super admin has allowed plugins
menu in the network options. Our BP_AGU_GROUP_SUPPORT_ID constant will store
the support group ID (in this example 3). I also added other constants to more easily refer
to js, css and images urls. The plugins_url() function is very convenient because
according to the protocol of your website (http or https), it will automatically build the
right url to the targeted files.

Warm-up!
In the WP administration (or Network administration) plugins menu activate the plugin.
Of course, at this moment nothing happens, but we can start having some fun. If you
want to know the list of variables of the $bp global, you can hook wp_head in order to
print this list.

http://codex.wordpress.org/Function_Reference/plugins_url
http://codex.wordpress.org/Function_Reference/plugins_url

add_action('wp_head', 'bp_agu_dump_bp');

function bp_agu_dump_bp() {
 global $bp;
 ?>
 <pre> <?php var_dump($bp);?></pre>
 <?php
}

If you refresh the front of your blog, the result will show the ultimate design experience
ever !
More seriously, the very beginning of the code shows an example of intercepting an
action hook. Using the function add_action('hook_to_intercept', 'by_my_fonction', 9, 1),
we tell WordPress as soon as it passes through the 'hook_to_intercept' then it must run
'by_my_fonction' code. The two following arguments are used to indicate the execution
priority of our function and the number of arguments to get from 'hook_to_intercept'.
You can delete this function as we will not use it in our plugin..

Load a javascript only when needed
In our toolbox, let’s use our "conditional template tags" bookmark. Whenever it’s
possible, for your plugin, I invite you to always make sure to load your javascripts and
style sheets only when you need it. As our support messages will be written from the
activity/post-form.php template of our support group, which is by default included in its
home page, we will use the conditional template tag bp_is_group_home().

add_action('bp_screens', 'bp_agu_load_js');

function bp_agu_load_js() {
 global $ bp;
 if (bp_is_group_home() && $bp->groups->current_group->id ==
BP_AGU_GROUP_SUPPORT_ID) {
 wp_enqueue_script('bp-agu-js', BP_AGU_PLUGIN_URL_JS.
'/ bp-agu.js', array ('jquery'));
 }
}

Here is a very useful new WordPress feature: wp_enqueue_script('id_of_our_js',
'url_to_my_js', array('dependencies')).
WordPress recommends using this function to include our scripts, one advantage is that
it allows us to include an identified script once and easily manage its dependencies (in
our example jQuery).

http://codex.wordpress.org/Function_Reference/wp_enqueue_script
http://codex.wordpress.org/Function_Reference/wp_enqueue_script

For information, to include a style, you can use wp_enqueue_style.
To load this javascript we must choose the right time and ensure that all variables that
we will be tested have already been initialized. Here I use the 'bp_screens' hook. It is
located in the bp-core/bp-core-hooks.php script. This is the hook used to define
templates and display BP components page. If, for example, I choose the plugins_loaded
hook, nothing will happen because the variable $bp->groups->current_group->id is not
initialized yet.

Actually, since we havn’t created the javascript file, nothing will happen! So let's create
the file bp-agu.js in our js directory. If you want to test, simply edit its content this way:

jQuery(document).ready(function($) {alert ('loaded!')});

Finding the best hook to intercept

Fig. 6 : Adding a Checkbox to the group activity form

We’ll come back in a few lines to our js file. For now, we can easily add a checkbox to the
support group activity form. I invite you to browse the template activity/post-form.php in
the bp-default theme folder of BuddyPress.

http://codex.wordpress.org/Function_Reference/wp_enqueue_style
http://codex.wordpress.org/Function_Reference/wp_enqueue_style

Fig. 7 : Choosing Our hook to add the checkbox ..

The above picture shows three hooks. If you test number 1 and 3, you'll find that the
positioning of our checkbox is either too high or really too low. So we will use the
'bp_activity_post_form_options' hook . Our function to add the checkbox will be:

add_action('bp_activity_post_form_options', 'bp_agu_checkbox');

function bp_agu_checkbox() {
 global $bp;
 if(is_super_admin() && bp_is_group_home() && $bp->groups-
>current_group->id == BP_AGU_GROUP_SUPPORT_ID) {
 ?>
 <input type="checkbox" value="1"
name="_support_message" id="support_message">Support</input></
span>
 <?php
 }
}

The is_super_admin() function returns true if the logged in user is the Admin or Super
Admin if WordPress is configured in multi-site mode. If you test this on the front side,
you'll find that your checkbox is not right next to the submit button as shown on Fig 6.
This is normal, since we will enrich this method using jQuery in the first version of our
plugin.

http://codex.wordpress.org/Function_Reference/is_super_admin
http://codex.wordpress.org/Function_Reference/is_super_admin

Our checkbox (if checked) will serve to trigger the behavior of sharing the support
message on all the BuddyPress groups of our website. We never know, all updates of
this group may not be support messages.
The activity recording related to the publication of new forums would otherwise be
automatically shared on all groups, and we do not want this behavior. Let’s now intercept
the activity, once published, to test the value of this checkbox.

The function responsible of activity recordings is bp_activity_add (). It is located in the
BuddyPress script bp-activity/bp-activity-functions.php. At the end of this function, a
hook allows us to intercept activity datas as soons as it’s published, it is the do_action
('bp_activity_add') marker. However, if we hook activity publishing here, we will have to
test if the activity is a group activity or not. There’s a simpler way. In the bp-groups/bp-
groups-functions.php script, the do_action ('bp_groups_posted_update') hook of
groups_post_update() function allows us to be sure the activity is a group activity.

/ * Function for temporary testing purposes .. * /

add_action('bp_groups_posted_update', 'bp_agu_check_support', 9,
4);

function bp_agu_check_support($content, $user_id, $group_id,
$activity_id) {
 if ($group_id == BP_AGU_GROUP_SUPPORT_ID &&
$_REQUEST['_support_message']) {
 wp_die('the value of the checkbox is'.
$_REQUEST['_support_message']);
 }
}

In the above code, in red, I put a 4th argument to my add_action() to indicate that I want
to get the four arguments that are available in the function
do_action('bp_groups_posted_update'). In my bp_agu_check_support function, i list
these four arguments so that i’ll be able to manipulate them.

I invite you to test this function in two steps: first normally, then by disabling javascript in
your browser. In the first case, nothing happens, in the second case, a beautiful
WordPress error will display the value of our checkbox. BuddyPress regularly uses AJAX
requests to dynamize the user experience, so we’ll have to use an alternate method to
get the value of our checkbox, and still, we’ll have to handle the case when javascript is
disabled.

What about a small cookie break ?
To send some of its variables in AJAX, BuddyPress uses cookies that lasts the duration of
your session. If you open the inspector of your browser when you have filtered the
activities to only show updates you will see a cookie named bp-activity-filter whose value
is fixed at activity_update. That’s why when you go in one of your groups or in your profile
the activity are also filtered on updates only.

Fig. 8 : BuddyPress uses session cookies to send some variables

We will therefore use this mechanism to pass the value of our checkbox in the AJAX
function that handles post activities. Watch the extract of the BP default theme _inc /
global.js file, and especially line 67:

Fig. 9 : $_POST ['cookie'] will save us

Awesome! When an activity is posted in AJAX, BuddyPress encode all session cookies
and send this data in the variable $ _POST ['cookie']. We just need to write a cookie that
we’ll call bp-agu-is-support as soon as the checkbox is checked. And to do that, we will
edit our javascript file that was only alerting "loaded!" so far. And as we’re using a
javascript, we will take benefit of it to move our checkbox right next to the submit button.
Here is our brand new bp-agu.js:

jQuery(document).ready(function($) {
 $('#whats-new-submit').prepend($('#bp-agu-cb').html());
 $('#bp-agu-cb').html("");

 if ($.cookie("bp-agu-is-support") == 1) {
 $("#support_message").attr('checked', 'true');
 }

 $('#support_message').live('click', function() {
 if ($(this).attr('checked'))
 $.cookie("bp-agu-is-support", $(this).val());
 else
 $.cookie("bp-agu-is-support",'');
 });
});

In bold blue, the moment when we write the value of our checkbox in our cookie. Now,
we need to test the value of this cookie in order to inform the Admin if he’s about to post
a support message in all groups or simply an update in its support group. That’s why, we
first test if the cookie is set and activate the checkbox eventually. Now that the javascript
is in place, we can take care of our bp_agu_check_support function to make it do
something smarter than throwing a WordPress error!

http://translate.googleusercontent.com/translate_c?act=url&hl=fr&ie=UTF8&prev=_t&rurl=translate.google.fr&sl=fr&tl=en&twu=1&u=http://imath.owni.fr/2012/05/02/extend-buddypress-part-1/&usg=ALkJrhjaiC8CN1ylOeqHIHjAH9VArFRyrA#alertjs
http://translate.googleusercontent.com/translate_c?act=url&hl=fr&ie=UTF8&prev=_t&rurl=translate.google.fr&sl=fr&tl=en&twu=1&u=http://imath.owni.fr/2012/05/02/extend-buddypress-part-1/&usg=ALkJrhjaiC8CN1ylOeqHIHjAH9VArFRyrA#alertjs
http://translate.googleusercontent.com/translate_c?act=url&hl=fr&ie=UTF8&prev=_t&rurl=translate.google.fr&sl=fr&tl=en&twu=1&u=http://imath.owni.fr/2012/05/02/extend-buddypress-part-1/&usg=ALkJrhjaiC8CN1ylOeqHIHjAH9VArFRyrA#alertjs
http://translate.googleusercontent.com/translate_c?act=url&hl=fr&ie=UTF8&prev=_t&rurl=translate.google.fr&sl=fr&tl=en&twu=1&u=http://imath.owni.fr/2012/05/02/extend-buddypress-part-1/&usg=ALkJrhjaiC8CN1ylOeqHIHjAH9VArFRyrA#alertjs
http://translate.googleusercontent.com/translate_c?act=url&hl=fr&ie=UTF8&prev=_t&rurl=translate.google.fr&sl=fr&tl=en&twu=1&u=http://imath.owni.fr/2012/05/02/extend-buddypress-part-1/&usg=ALkJrhjaiC8CN1ylOeqHIHjAH9VArFRyrA#alertjs
http://translate.googleusercontent.com/translate_c?act=url&hl=fr&ie=UTF8&prev=_t&rurl=translate.google.fr&sl=fr&tl=en&twu=1&u=http://imath.owni.fr/2012/05/02/extend-buddypress-part-1/&usg=ALkJrhjaiC8CN1ylOeqHIHjAH9VArFRyrA#alertjs

On our way to the "main street" of our extension

Fig. 10 : here is our new bp_agu_check_support function

To get the code of this function and eventually copy and paste it in the plugin we started,
you can always download the sources . Now analyze the three steps of this function.

First, we retrieve the value of our checkbox (step 1). We begin by assuming that the user
has disabled javascript in his browser so we initialize the variable $is_support_message
with the post value of the checkbox. If it does not exist then, javascript is enabled. So
we’ll need to parse $ _POST['cookie'] to store all the cookies of the document in an
associative array. Then, we get the value of our cookie bp-agu-is-support and assign it to
our variable $is_support_message.

Step 2: if our cookie is set and if the group ID - which has been passed as parameters to
our function via the arguments of the marker do_action ('bp_groups_posted_update') -
corresponds to our support group ID (defined as a constant at the beginning of our
plugin), then we use bp_activity_get_specific() function - which is located in the
BuddyPress bp-activity/bp-activity-functions.php script - to get the elements of the
activity.
As its name suggests, it retrieves activities by passing either an id or an array of activities
id. In the same way that we inherited from the hook we’re intercepting the group_id, the
activity ID is in the $activity_id argument of our function. We now need to prepare the
array of arguments the groups_record_activity() function expects. You'll find these
function in the bp-groups/bp-groups-activity.php script. We will simply forget to specify
the index 'item_id' of this array for now. Important, please note that at line 75 we’ve
created a new type of activity: support_update

Step 3. Reminder : our goal is to enable the super admin to use a ‘support’ group in
order to share support messages on all the other groups of the BuddyPress driven
community website.
To achieve this, a loop is needed. This is what we‘re about to do, thanks to a very useful
WordPress class that eases communication with the database: $wpdb . By the way,
you've noticed that I referenced it at the beginning of the code (at line 56) of this function?
For a quick brief on this class, I invite you to read from slide 11 to 15 of the presentation I
used during the WordPress Algeria day. So we get an array containing the ids of all
groups (Table wp_bp_groups), on which we loop to add the famous index 'item_id' -
having checked that the group id is not the one of our support group - of the array of
arguments expected by the groups_record_activity() function and while still in the loop
we run that function. As a result the activity is duplicated on our two groups.

Being imaginative using tricks
Then you would say "yep, but if I go on the Site Wide Activities, i'll have three activities
displayed instead of one : not great!".
Except that in the argument array of groups_record_activity() function, we specified that
these activities would be hidden ('hide_sitewide' => 1).

http://codex.wordpress.org/Class_Reference/wpdb
http://codex.wordpress.org/Class_Reference/wpdb
http://www.slideshare.net/imath/wp-day-algrie-concevoir-un-plugin-wordpress
http://www.slideshare.net/imath/wp-day-algrie-concevoir-un-plugin-wordpress
http://www.slideshare.net/imath/wp-day-algrie-concevoir-un-plugin-wordpress
http://www.slideshare.net/imath/wp-day-algrie-concevoir-un-plugin-wordpress

Fig. 12 : Oops, we still have some work !

You couldn’t wait to test it, neither could i ! First I checked the Site Wide Activities of
BuddyPress: and only one message support is displayed, which is normal because we
specified ('hide_sitewide' => 1). If I go to the private group that we created for our tests,
the support acivity is also displayed. But, when I go to the public group of our test
environment: that’s an epic fail!

Why so much hate? It's been 10 minutes you’re reading this tutorial and "dang, not
working at all"! In fact it is normal the public group does not display this activity because
in the table wp_bp_activity, the hide_sitewide field of this activity is set to 1 and as we’re
in a public group, it will display only the updates with hide_sitewide field set to 0.

So, we need to go a little deeper into the heart of the Activity component of BuddyPress.
The groups_record_activity() function located in bp-groups/bp-groups-activity.php script
calls bp_activity_add() function from bp-activity/bp-activity-functions.php script which
calls the BP_Activity_Activity class located in bp-activity/bp-activity-classes.php script to
create the activity. Still following me?

Fig. 13 : Extract from the get() function of BP_Activity_Activity class

The get() function of this class creates this Sql WHERE argument "a.hide_sitewide = 0".
But if the group is not private: we actually need to have the updates with a hide_sitewide
field that is greater than or equal to 0!
I suggest a trick to achieve this. You noticed that the query that populates $activities has
a filter hook? So we will be able to use it. The characteristic of this type of hook is that it
expects a value in return. So we will use a add_filter() to get the value of the request and
return to it a slightly different query: admire the trick!

add_filter('bp_activity_get_user_join_filter',
'bp_agu_sql_trick_to_include_hidden', 99, 1);

/ * Do not forget the activities sql count! * /
add_filter ('bp_activity_total_activities_sql',
'bp_agu_sql_trick_to_include_hidden', 99, 1);

function bp_agu_sql_trick_to_include_hidden($sql) {
 if(bp_is_group_home()) {
 return str_replace('a.hide_sitewide = 0',
'a.hide_sitewide >= 0', $sql);
 }

 return $sql;
}

If we are on the group home, we will replace a.hide_sitewide = 0 by a.hide_sitewide >=
0, otherwise it returns the query without modification. As for the add_action() hook, we’re
specifying the number of arguments expected (1) after the priority, so that the value of
the SQL query is passed to our bp_agu_sql_trick_to_include_hidden($sql) function.
That will satisfy our needs.

http://codex.wordpress.org/Function_Reference/add_filter
http://codex.wordpress.org/Function_Reference/add_filter

Loopings!

Fig. 14 : Ouch, Caramba!

This is embarrassing .. All is not quite finished: if from the Site Wide Activities of our site,
I activate the My Groups tab or if I go on my profile activities, being super Admin, three
identic activities are displayed. So we could say "it's okay, it only affects the super
Admin!", But the house tries to heal its plugins. So we will solve this new problem.
To do so, let’s meet the BuddyPress Activity loop. Let's look at the bp-default theme
template activity/activity-loop.php.

Fig. 15 : Well here is a very nice loop

bp_has_activities() function will gently bring us to the bp-activity/bp-activity-
template.php script which contains BP_Activity_Template class.
bp_has_activities() calls this class and stores its rendering in the global
$activities_template. This global allows BuddyPress to return various informations
related to the activity whenever we will use the activity template tags. If you read the
template activity/bp-entry.php of the default theme, you will meet a lot of these template
tags, here's a selection that will be useful for our plugin:

● bp_activity_can_comment(),
● bp_activity_can_favorite(),
● bp_activity_user_can_delete(),
● bp_get_activity_type(),
● bp_activity_user_link(),
● bp_activity_avatar(),
● etc. ..

Interesting detail about these template tags : it often works in pairs. Let me explain:
bp_activity_avatar() displays the result of bp_get_activity_avatar(). And all bp_get_ ...
contain filters to hook on.

Back on bp_has_activities(). In lines 332 to 371 of its code, we see that depending on the
"scope", BuddyPress prepares adjustments to the query that we have seen above. Thus,
in the case of activities displayed on the logged in user's profile, all activities he shared
will be integrated, it is the same for the activities of the My Groups tab in the Site Wide
Activities.
And the function that directs this switch is both in the blue box of figure 15 and both
(mainly actually!) in bp-core/bp-core-template.php script, i’m talking of
bp_ajax_querystring, and guess what, this function provides a filter : we will be able to
change this behavior from our plugin.

add_filter('bp_ajax_querystring',
'bp_agu_neutralize_support_updates_in_scopes', 99, 2);

function bp_agu_neutralize_support_updates_in_scopes
($ajax_querystring, $object) {

 $r = wp_parse_args($ajax_querystring);
 extract($r);

 if ($scope == 'groups' || bp_is_user_activity()) {
 $exclude_ids = array();
 $exclude_activities = bp_activity_get(array
('show_hidden' => true, 'filter' => array ('action'
=>'support_update')));

 foreach ($exclude_activities['activities'] as
$exclude_id) {
 $exclude_ids[] = $exclude_id->id;
 }

 return $ajax_querystring. '&exclude='. implode(',',
$exclude_ids);

 }

 return $ajax_querystring;
}

So in order to display only one activity, we simply exclude them if they have a
support_update type. We did well when we created this type of update in our
bp_agu_check_support() function ! So we put the activities to exclude into an array and
add a variable to the AJAX query string that will contain the list of activity ids separated
by commas.

A little makeover is needed ..

Fig. 16 : Customizing support activities.

Amazing what can be done with filters, right? Here the extent of the makeover for our
support_updates activities that wil be displayed in groups:

1. Hiding traditional action buttons (comment, favorite or delete).
2. We change the avatar of the user by the support group one (and the userlink by the

group home one).
3. Let’s remove the secondary avatar since we do not need it anymore.
4. We modify the permalink of the support update for the support group's parent

activity.
5. We add a comment button that redirects on the parent activity (the one created by

the support group), and displays its number of comments.

All these mods by simply using filters of the activity template tags we discussed earlier. I
will not illustrate each of them, but you will find all the customizations in the main file of
the plugin available in download , here's an example:

add_filter('bp_activity_permalink',
'bp_agu_override_activity_time_since', 99, 1);

function bp_agu_override_activity_time_since($content) {
 if ('support_update' != bp_get_activity_type())
 return $content;

 $parent_activity_id = bp_get_activity_secondary_item_id();

 return preg_replace("/\/p\/([0-9]+)\//','/p/'.
$parent_activity_id.'/', $content);

}

Once the makeover is completed, members will not comment on 'support_update'
activities but will be redirected to the parent activity the support group created: this way
we can centralize all the comments in one place.
By disabling the delete button we avoid its removal by group administrators.
Finally, we remove the favorite button because who wants to bookmark a support
message?!

We still have to consider the parent activity deleting. If the super Admin deletes the
support message all the logic falls down: you lose the mother! The following function
takes care of this possibility by removing the child activities if the mother was to
disappear ... Sad fate for these children, they are doomed not to outlive their parents..

add_action('bp_activity_delete', 'bp_agu_handle_deleting', 9,
1);

function bp_agu_handle_deleting($args) {
 bp_activity_delete (array('type' => 'support_update',
'secondary_item_id' => $args['id']));
}

Let’s ease the the super admin’s life and take care of deleting our
fingerprints
That's not bad, it can almost be our first package for testing! Before, there must be an
admin interface for our plugin in the WordPress backend, so that Admin does not have to
modify the source code of the plugin to adapt the constant
BP_AGU_GROUP_SUPPORT_ID to match the id of his support group (which is not
necessarily 3!).
As we’re designing a BuddyPress plugin, I invite you to link this interface to the
BuddyPress administration. Depending on the configuration of WordPress, this menu is
either in the WP Admin area or in the Network Admin one. To anticipate this eventuality,
we can use the is_multisite() function to intercept the good hook depending on its result.

add_action(is_multisite() ? 'network_admin_menu' :
'admin_menu', 'bp_agu_backend_menu', 21);

function bp_agu_backend_menu(){
 if (!is_super_admin())
 return false;

 add_submenu_page ('bp-general-settings', 'Options Ads
Group Update', 'Options Ads Group Update' , 'manage_options',
'bp-agu-backend-slug', 'bp_agu_backend_page');

}

For more information about adding Administration page in WordPress, I invite you to
visit(again) the presentation I used during the WordPress Algeria Day and more precisely
its slide 36. In red in the above code, the reference to the function that plays when the
administrator clicks on the "Options Group Update Ads" menu.

Fig. 17 : Here’s a nice admin page!

If we look at the source code of the bp_agu_backend_page() function, you will see that
we use the security mechanism wp_nonce to ensure that the request comes from our
site. It is also important to validate user inputs before storing or displaying them. In our
case, as we’re expecting a group ID, or an integer, we use the function intval() to ensure
that only an integer will be saved.
function bp_agu_backend_page() {

 if($_POST['_bp_agu_options'] && check_admin_referer('bp-
agu-option', '_bp_agu_option')) {

 if(update_option('_bp_agu_group_support', intval
($_POST['_bp_agu_group_support'])) !== false)
 echo '<div id="message" class="updated"><p>Options
saved</p></div>';

http://codex.wordpress.org/Administration_Menus
http://codex.wordpress.org/Administration_Menus
http://www.slideshare.net/imath/wp-day-algrie-concevoir-un-plugin-wordpress
http://www.slideshare.net/imath/wp-day-algrie-concevoir-un-plugin-wordpress
http://codex.wordpress.org/Wordpress_Nonce_Implementation
http://codex.wordpress.org/Wordpress_Nonce_Implementation
http://codex.wordpress.org/Data_Validation
http://codex.wordpress.org/Data_Validation

 }

 $group_support =
intval(get_option('_bp_agu_group_support'));

 /* to be continued... */

}

We use the wp_options table to store the global settings of our plugin. Now that the
admin can store its group ID, do not forget to change the value of our constant
BP_AGU_GROUP_SUPPORT_ID!

define ('BP_AGU_GROUP_SUPPORT_ID',
bp_agu_define_support_group());

function bp_agu_define_support_group() {
 return intval (get_option ('_bp_agu_group_support'));
}

We almost finished the beta version of our plugin: hang in there!
As the functionality of our plugin may evolve, in the WordPress wp_options table, it may
be useful to store its version. This way, during updates, we can provide the appropriate
actions to be performed depending on the version used by the site. We will use
WordPress registration hook which occurs just after the activation of our extension by the
administrator.

register_activation_hook (__FILE__, ' bp_agu_activate ');

function bp_agu_activate() {
 if(get_option ('_bp_agu_version') !=
BP_AGU_PLUGIN_VERSION){

 update_option ('_bp_agu_version', BP_AGU_PLUGIN_VERSION);

}
}

Finally and quickly: we will add a new file at the root of our plugin. We will call it
uninstall.php. This file will be called by WordPress at the time the admin has confirmed
its desire to remove the plugin from his site.
This is very important, as far as possible, to try to erase all traces of our plugin in
particular in the database. Also in our case, we set up a mechanism that duplicates
activities. As soon as the admin has deleted our plugin « patatra »...! all support_updates

we have cleverly hidden, will reappear. Below you’ll find the download link of our plugin ..
Hip Hip Hip ...

Download the first version of our plugin..

Half time !

Crédit Photo : Midsummer Nights's Cross Race: Winner de Hugger Industries, sur Flickr

If we check our landscape, we did meet BP_Activity_Activity "CRUD" Class of the
wp_bp_activity table, functions for adding and deleting activities as well as the
BP_Activity_Template templating class and the filterable activity template tags. There is
a point we have not addressed: the activity metas that are stored in the
wp_bp_activity_meta table. We will shortly be introduced to them in our next step.

Our plugin can still be improved: it is important to think about internationalization. This
will increase its use and enrich the feedback and feature requests. It is also important to
optimize it by ensuring that BuddyPress is "ready to rock" before loading the complete
code for our extension.
By the way, this support updates functionnality made me immediately think of sponsored
tweets, it's probably why i called this plugin Ads BP Group Update ..

http://dl.dropbox.com/u/2322874/bp-ads-group-update-0-1.zip
http://dl.dropbox.com/u/2322874/bp-ads-group-update-0-1.zip

Plugin Upgrade

Our new goal: would’nt it be nice if members could reshare activities just like we retweet..

demo available here http://vimeo.com/imath/bp-agu-1-0

Optimize!

Luckily, with this new reshare feature we can imagine the interest of adding a counter of
number of reshared updates and then use the activity metas to store this counter. Before
coding it, let’s optimize and reorganize our plugin.

Fig. 18 : Let’s Optimize by hooking on bp_include

As you can see, we’ve created three new files in the includes directory of our plugin. All
functions related to the functionality support_update were moved in the includes/bp-
agu-support.php script, we have prepared the includes/bp-agu-reshare.php script to

http://vimeo.com/imath/bp-agu-1-0
http://vimeo.com/imath/bp-agu-1-0

host the functions related to the reshare_update functionality and functions related to
the administration interface of our plugin were moved in includes/bp-agu-admin.php.

bp-agu-init() is fired when BuddyPress passes through the bp_include hook, it first
includes the file includes/bp-agu-support.php before loading if the conditions are right
(reshare function enabled or admininterface) other scripts. By doing so, we can capitalize
on the code of support_update. If you look at bp_agu_reshare_is_activated function(), it
simply takes care of returning the choice we made in the administrative interface of our
plugin. So our first step is to edit the code of the admin page by adding a radio to handle
activation of reshare_update.

 Fig. 19 : reshare_update’s on

I will not detail here the code, you can consult it in the download below. We decide to
better identify our "retweets" by using a new type of activity:'reshare_update'.

Capitalize!

To allow the member to reshare an activity, we simply add a new action button in the
activity just like we did when we added a link to the comments of the parent activity
(support_update cusomization item 5) Moreover, we will take advantage of this button
that gets the number of comments of the parent activity and sends us back to its
permalink. I think the comments would be much better in the first shared activity.

To do this in the includes/bp-agu-support.php script we’ll need to give a higher priority
on the comment button hook than for the reshare button hook we'll create. Moreover, we
won’t forget to add 'reshare_update' type to the condition that creates this comment
button.

/* in bp-agu-support.php */
// hook with a priority of 9
add_action('bp_activity_entry_meta', 'bp_agu_add_action_link',
9);

function bp_agu_add_action_link() {
 if(!in_array(bp_get_activity_type(),
array('support_update', 'reshare_update')))
 return false;

 /* to be continued */
}

/* in bp-agu-reshare.php */
// hook with a priority of 10, this button will be displayed
// after the comment one.
add_action('bp_activity_entry_meta',
'bp_agu_add_reshare_button', 10);

function bp_agu_add_reshare_button() {
 global $bp;

 if(!is_user_logged_in())
 return false;

 /**
 * we won’t allow the reshare of support messages..
 * no interest..
 * /
 if('support_update' == bp_get_activity_type())
 return false;
 /* to be continued */
}

Highlighted in yellow the condition "if not in the table" which we will also use to take
advantage of points 1 and 4 of the support activities customization.

In our bp_agu_add_reshare_button() fonction, we will create a link containing a $_GET
variable named 'to_reshare' to which we will add a nonce for security. This link will be

useful if the user has disabled javascript in his browser. By default, we’ll use AJAX! Then,
this button will be clickable if conditions are met:

1.The author of an activity won’t be able to reshare it: no interest!
2. If the member has shared an activity, he won’t be able to reshare it again: beside the
"reshare" counter , we’ll need a second meta activity that will store an array of user_ids
who "retweeted" the activity

Fig. 20 : Reshare activity look and feel

WPAjaxifying the reshare
This is a very interesting WordPress mechanism. To use it, proceed in three steps :

1. Client-side (PHP -> JS): add a javascript variable to indicate the url that will handle
ajax requests.
2. Client side (JS): provide a variable whose name is 'action' in our jQuery.post.
3. Server side (PHP): Add a 'wp_ajax' hook to intercept the variable 'action' and print a
response before stopping the PHP code execution.

In a BuddyPress environment, the variable "ajaxurl" is already available. So, next!
We take care of our javascript. Do not forget to load it into the page with
wp_euqueue_script of course, do you remember how it's done?
This time, we not only need our javascript to be loaded if we’re on the group activity page
of a particular group but for all activities. The condition will be:

add_action('bp_actions', 'bp_agu_load_reshare_css_js ');

http://codex.wordpress.org/AJAX_in_Plugins
http://codex.wordpress.org/AJAX_in_Plugins

function bp_agu_load_reshare_css_js(){

 if(bp_is_activity_component() || bp_is_group_home()) {
 wp_enqueue_style ('bp-agu-reshare-css',
BP_AGU_PLUGIN_URL_CSS.'/reshare.css');
 wp_enqueue_script ('bp-agu-reshare-js',
BP_AGU_PLUGIN_URL_JS.'/reshare.js', array('jquery'), 0, 1);
 }

}

Fig 21 : JS -> PHP -> JS

reshare.js intercepts the click on the reshare button and sends the ajax request which is
intercepted by bp_agu_handle_ajax_reshare function() localised in bp-agu-reshare.php
script.

Once we’ve received the response, we change the button display and increment by 1 the
number of "reshares". Finally, do not forget to return false to prevent the link to be
actually submitted.

Enjoy the activity metas.
In the illustration above at line 132, bp_agu_prepare_reshare() function is called to
build the array of arguments needed to record the 'reshare_update' activity thanks to the
BuddyPress bp_activity_add() function.
To do this it sends the id of the activity to reshare Ajax has given us. Now we’ll be able to
play with activity metas.

In the bp-activity/bp-activity-functions.php script, we find the three tools that allow us to
interact with the wp_bp_activity_meta table.

• bp_activity_update_meta($activity_id, $meta_key, $meta_value)
 Adding or changing information stored in a meta key for the activity id.
• bp_activity_get_meta($activity_id = 0, $meta_key = "")
 It retrieves the information stored in the meta key for the activity id.
• bp_activity_delete_meta($activity_id, $meta_key = "", $meta_value = "")
 It deletes the information stored in the meta key for the activity id.

What is interesting is that the values are serialized / deserialized automatically using
respectively bp_activity_update_meta() and bp_activity_get_meta(). This saves us time
to store PHP arrays for example..

Fig 22 : the 3 steps of our main function

First, we get the elements of the activity to reshare. Its content and its visibility
(hide_sitewide) will be used for our reshare.
Its ID will become our secondary id: this data will create the filiation link between the
activity first posted and its reshare.

Step 2: we recover the meta "reshares counter" attached to the activity to be reshared
(the parent), if it exists its counter is incremented by 1 else we set it to 1 before updating
this meta.
Then let’s take care of the user_ids array who "reshared" the parent activity, we add the
id of the connected member if not already in this array, otherwise, if the table does not
exist it is created by inserting the id of our member.
We update the second activity meta.

Finally, we build the arguments of our new activity before returning them. Did you see I
added a filter if a third party plugin or a theme functions.php wants to intercept it ?
Note that the bp_agu_prepare_reshare() function is also called if the user has disabled
its browser javascript.
In that particular case, we intercept bp_actions hook to check if the variable
$_GET['to_reshare'] is not empty then we eventually add the activity.
We can inform the user of the success or failure of this action via the
bp_core_add_message() fonction before redirecting the user on the same page (striped
of the variables).
You will find the code of the bp_agu_handle_nojs_reshare() function in the plugin
available for download at line 148 of the includes/bp-agu-reshare.php script.

We almost finished! Like what we did for the support message functionality, we will not
forget to create the function that will remove reshare_update typed activities if the main
activity had disappeared, and to adapt our uninstall.php to delete our fingerprints!

To In(finity)ternational and Beyond
Allow the plugin to be translated is from my point of view very important because it will
maximize its use Worldwide!
WordPress uses the gettext library, you'll find in the codex all available translation
functions.

http://codex.wordpress.org/I18n_for_WordPress_Developers
http://codex.wordpress.org/I18n_for_WordPress_Developers
http://codex.wordpress.org/I18n_for_WordPress_Developers
http://codex.wordpress.org/I18n_for_WordPress_Developers

Fig.23 : PoEdit help us in translating plugins...

In our plugin, every time we wrote a message to be displayed in French, we just need to
translate them into English and include them in functions such as:
• __ ('Translate!', 'our_plugin_id') to return the translation in a variable
• _e ('Translate!', 'our_plugin_id') to display the translation in the browser

We load our "plugin_textdomain" by hanging on a hook involved early enough in the
loading of BuddyPress (eg: on the black background in the illustration above).
We build a .pot file that will specify the line numbers of the php scripts with the elements
to be translated for each and we finish by generating language catalogs (po and mo
fr_FR files) using PoEdit.

Possible evolution of the function reshare

For the purpose of the tutorial on activity metas, we store the user_ids of members who
reshared an activity in a array attached to the first posted activity. However, as this

information is strongly linked to the user, it would probably be a better place to store it in
user_metas. We could easily create a new area for connected members like the "My
favorites" tab. It could be called "My reshares". In the user_meta of the logged in user,
you would store an array of reshare_update typed activity ids, then you could send this
array to the bp_activity_get_specific() function in order to list the reshares

Download the final version of our plugin!

Crédit photo : applause by Alan Wiig, on Flickr

You have arrived so far? Huge Congratulations to you! I recognize that this first tutorial is
relatively long. I've tried to share with you as closely as possible the result of my
explorations of BuddyPress. There are certainly opportunities for improvement but I think
we have an interesting basis to move to a higher stage: design of a component using the
BP_Component BuddyPress class ... Coming soon, very soon on this blog...

http://dl.dropbox.com/u/2322874/bp-ads-group-update-1-0.zip
http://dl.dropbox.com/u/2322874/bp-ads-group-update-1-0.zip

